

HYDRAULICS VANE PUMPS: DESCRIPTION

PUMP CONSTRUCTION AND PARTS IDENTIFICATION

PUMP PARTS

The components of a typical vane-type pump are shown in Figure 1. This single-section pump has one cartridge assembly.

Double-section pumps (Figure 2) are similar, but have a longer shaft and housing, and use two cartridge assemblies. The housing sections include the body and covers, which have the openings for line connections. Also shown are the shaft with drive end bearing and seal, and the O-ring seals necessary to isolate the inlet and outlet compartments when the cartridge is assembled in the housing sections.

CARTRIDGE PARTS

Figure 3 shows the individual parts of a cartridge assembly. These high-precision parts comprise the actual pumping unit. The vanes (and vane inserts in most pumps) fit in the slots of the rotor, which is splined to, and driven by, the pump shaft. The rotor is installed on the shaft in the centre of the oval shaped cavity inside the cam ring. The cam ring is a liner for the housing, hardened for high resistance to wear. It is machined to provide the correct side clearance for the rotor and vanes, and the correct internal contour for the vanes to follow. The end plates fit against both sides of the cam ring, enclosing the rotor and vanes. Two pins hold all the parts in alignment, and two screws retain the assembly. Both plates have grooves and passages to control oil flow. The larger of the two end plates has the outlet ports and is usually called the pressure plate. The other plate, used on the inlet side is called the wear plate. Oil pressure behind the pressure plate holds the pump components together.

HYDRAULICS VANE PUMPS DESCRIPTION

PRINCIPLE OF OPERATION AND OIL FLOW

During operation, the vanes are held outward against the cam ring by internal hydraulic pressure. Pressure oil enters the cavity between the vane and vane insert through the groove in one side of the rotor slot, causing the insert to act as a small piston. With the insert against the bottom of the rotor slot, the pressure oil between the top of the insert and the vane gives a uniform, controlled force to hold the vane outward. Any oil in the slot under the vane on each side of the insert can flow out through the drilled holes to the outside diameter of the rotor.

As the shaft turns the rotor, the vanes follow the internal contour of the cam ring. There are two points of minimum clearance between the rotor and cam ring, and two points of maximum clearance. These four points are located alternately each 90° of rotation. As the rotor turns, the vanes move outward during 90° of rotation, then inward during the next 90° of rotation. This completes a pumping cycle each 180° or one-half turn, giving two complete pumping cycles per revolution. With this design, the pressure loads and rotation resistance are equal on both sides of the rotor, so the internal forces are in balance. This keeps bearing loads and other stresses low for longer pump service life.

PUMPING ACTION

Each pair of vanes forms a pumping chamber which increases in volume as the vanes move outward, and decreases in volume as the vanes move inward. This change in volume, or displacement, produces the pumping action. During the rotation quadrant (90°) where the volume increases, oil is drawn into the chamber through the inlet port. As the chamber moves through the next quadrant, the volume decreases and the oil is forced out through the outlet port. Pressure develops only in direct relation to any restriction downstream from the pump outlet. If there is no restriction, the oil flows without pressure.

For the two pumping cycles per revolution, two inlet and two outlet ports are used. These are located alternately in each quadrant to permit oil flow in and out of the pumping chambers. Since the chambers are closed, and displace a specific volume per revolution, the pump is a positive displacement type.

PUMP ROTATION

When installing a replacement pump or pump cartridge, be sure to check the direction of rotation. The cartridge assembly is directional in rotation, but most cartridges can be reversed if necessary. Changing the direction of rotation changes the part number of the cartridge. To do this, it is only necessary to exchange the end plates. The cam ring, rotor, and vanes are the directional parts, and these must be correctly aligned with each other. Vane direction can be identified by the bevelled outer edge: The side in contact with the cam ring is the front, or leading side; the bevel is toward the back of the vane. The cam ring and rotor are marked with arrows showing the direction of rotation, and these arrows must be aligned to point in the same direction. A number is stamped beside the arrow on the cam ring. This number is a standard gallons-per-minute rating of the manufacturer under consistent, specific conditions, and can be used for comparative purposes; i.e., the cam ring of a new cartridge should have the same number as the cam ring of the cartridge that was removed. Normally, the manufacturer's rating is established at 1200 RPM and 100 PSI (7.03 kg/cm2), with oil at 150°F (66°C).

